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Abstract-The mechanical properties of 3 types of cellular solids (flexible, plastic and brittle) have been 
measured as a function of density. The results are compared with models for the stiffness, strength and 
densification; and constitutive laws are developed. Data and models for each type of cellular solid are 
combined to develop mechun&n-mode mq~ which summarise the properties in a single diagram; this 
understanding, in turn, allows the construction of energy ubsorpfion diagrams for classes of foams. Natural 
cellular materials fit the same pattern; maps are presented, as an example, for wood. The maps help in 
design and in the selection of the optimal foam for a given load-bearing or energy-absorbing application. 

R&nrm&Nous avons mesun les proprietes mecaniques de trois types de solides cellulaires (flexible, 
plastique et fragile) en fonction de la densiti. Nous comparons les rCsultats avec des mod&s de la raideur, 
de le resistance et de la densification; nous prisentons des lois constitutives. Nous combinons les r&sultats 
et les modlrles pour chaque type de sohde cellulaire afin de developper des cartes m&anismc-mode qui 
r&sument les proprietes en un diagramme unique; ceci permet P son tour de construire des diagrammes 
dabsorption d’energie pour des classes d’&cume. Les materiaux cellulaires naturels v&rifient les m&nes 
diagrammes; nous pr&sentons ainsi, par exemple, les diagrammes pour le bois. Ces cartes aident a 
concevoir et a choisir l%cume optimale pour une application don&e de support de charge ou d’absorption 
d’tnergie. 

Zusammenfaaumg-Die mechanischen Eigenschaften von drei Typen xellartiger Fe&&per (flexibler, 
plastischer und sproder Typ) wurden in Abhiihgigkcit von der Dichte gemessen. Die Ergebnisse we&n 
mit Modellen fib die Stein&it, die Festigkeit und die Verdichtung verghchen; Grundgesetze werden 
entwickelt. Ergebnisse und Modelle werden ftir jeden zellartigen FestkBrper so kombiniert, dat3 die 
Eigenschaften jeweils in einem einxigen Diagramm dargestellt werden kann. Daraus lassen sich wiederum 
Energieabsorptionsdiagramme fiir Klassen von Schiiumen konstruieren. Nattirliche zellartige Materialien 
fiigen sich ein; LB. wird ein Diagramm Wr Holx vorgelegt. Diese Diagrammkarten helfen bei dem Design 
und der Auswahl des optimalen Sehaumes fiir eine gegebene Anwendung in Belastung oder Ener- 
gieabsorption. 

1. INTRODUCTION Figure 1 shows, schematically, the structure of 
Polymeric foams have certain characteristic mechan- cellular solids. Some have open cells: the solid 
ical properties. Elastomeric or flexible foams, in material is distributed as little beams which form the 
simple compression, are linear-elastic to a strain of cell edges. Others have closed ceils: the solid is 
about 5%. Then the cell walls buckle and the foam distributed as little plates which form the cell faces. 
collapses at a nearly constant stress (giving a non- The mechanical properties reflect, to some extent, this 
linear elastic deformation) until the cell walls touch distribution. In practice, most man-made foams (even 
and the stress-strain curve rises steeply. Rigid poly- those with closed cells faces) behave as if they had 
men and metals, when foamed, have a similar open cells because surface tension draws much of the 
stress-strain curve, but for a different reason. Like solid material into the cell-edges during manufacture. 
flexible foams, they are linear-elastic to a strain of For this reason, we discuss open-cell foams in detail, 
roughly 5%. Then they suffer plastic collapse, com- but treat closed cell foams only in passing. 
pressing plastically at a nearly constant stress until The mechanical properties of a cellular solid can be 
the cell walls touch, and the stress-strain curve rises related to the mechanics of bending, buckling, plastic 
steeply. Brittle foams, too, show an initial linear- collapse and brittle fracture of its cell walls. Each part 
elastic regime. But when the stress is reached at which of the stress-strain curve can be modelled [l-4]. The 
cell walls fracture, the stress-strain curve becomes models give equations for Young’s modulus E*, the 
irregular (though roughly horizontal) and the foam elastic buckling stress af, the plastic collapse stress 
crushes at (roughly) constant load. as, the crushing strength uf, and terminal rise in 

strength, in terms of the density and properties of the 
ton leave from I.T.T., Bombay, India. material of which the foam is made. 
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Fig. I. Schematic of cellular material, showing dimensions. 

This paper seeks to test and extend these models, 
(checking them against data from literature and new 
data, described below), to derive constitutive laws for 
design with cellular solids, and to develop diagrams 
which summarise the overall mechanical response of 
each type. Symbols are defined in Table 1. 

2. EXPERIMENTAL RESULTS 

2.1. Foamed plastics and ceramics 

We tested samples of commercial flexible foams (a 
polyethylene and a polyurethane), samples of a 
commercial rigid foam (a polymethacrylimid) and 
an experimental batch of a brittle ceramic foam 
(mullite). The materials, their origins and the proper- 
ties of the cell walls are listed in Table 2. Their 
structures are shown in Fig. 2. 

Compression tests were carried out on blocks of 
foam of a convenient size (the size depending on the 
stiffness), at a temperature of 18°C and a strain-rate 
of roughly 2 x 10-‘/s. Results are shown in Figs 3-6. 
The axes are the nominal stress (the load P divided 
by the initial section A& 

P 
QC- 

A0 

and the nominal compressive strain 

b-h 

s=ho 

where h is the height of the sample after a strain s, 
and ho is the original height. When foams are com- 
pressed beyond a strain of a few percent there is 
almost no lateral spreading, so the nominal and true 
stresses are, for all practical purposes, identical. The 
nominal compressive strain is, of course, limited to 
the range &I. 

All the stress-strain curves show three regions: a 
lineur elustic region; a long pluteau where the stress is 
almost independent of strain; and (for all but the 
brittle foams) a final region of densification in which 
the stress-strain curve rises steeply. Young’s modulus 
E* of the rigid foams was measured by using clip 
gauges. The density p of each foam was measured by 
conventional methods. Mean values of p, E* and of 
the plateau stress u* are listed in Table 3. 

2.2. wooa!s 

We also tested a number of woods, chosen to give 
a range of relative densities between 0.05 and 0.5. 
Samples of well-seasoned woods, roughly 
20mm x 20 mm x 40 mm, were cut with the long 
direction parallel to a radius of the trunk and parallel 
to the axis of the trunk. The samples were stored for 
10 days to reach equilibrium moisture content 
(roughly 12%) and tested in compresssion at 18°C 
and a strain rate close to 10m3/s. Results are shown 
in Figs 7 and 8. 

Table 1. Symbols and units 

applied compressive stress (N/m3 
nominal compressive strain ( - ) 
strain at lincarslastic limit ( - ) 
strain at boundary between plateau and densification 
(-) 
initial density of cellular solid (kg/m’) 
density after compressive strain e (kg/m’) 
density of cell wall material (kg/m’) 
relative density ( - ) 
Young’s modulus of cellular solid (N/m*) 
Young’s modulus of cell-wall material (N/m’) 
elastic collapse or plateau stress of elastomeric foam 
(N/m’) 
plastic collapse or plateau stress of plastic foam (N/m3 
yield strength of cell-wall material (N/m*) 
crushing stress of brittle foam (N/m3 
modulus of rupture of cell-wall material (N/m2) 
cell wall thickness (m) 
cell size or cell wall length (m) 
length of cell walls which are about to buckle at strain 
s (m) 
length of uncollapsed cell walls which buckle first (m) 

second moment of area of cell wall or edge (m’, 
force acting on a all waU (N) 
Euler buckling load for cell wall (N) 
fully plastic moment of cell wall (Nm) 
moment which will just fracture cell wall (Nm) 
dimensionless constants ( - ) 
initial height of sample (m) 
height a&r strain e (m) 
load (N) 
energy absorbed per unit volume (J/m’) 

Table 2. Foam materials and the cell-wall orooerties 

Material 

Flexible polyethylene 
Flexible polyurethane 
Polymcthylacrylamid 
Brittle mullite 
woods 

(radial compression) 
woods 

(axial compression) 

Density range 

(kg/m? 

29-360 
14-52 
34-186 

100-320 

103-787 
103-764 

(k$n’) (M?a) (I&a) 

1200 700 - 
1100 4s - 
1200 3600 360 
3200 3600 - 

1500 10,000 135 
1500 35,000 135 

(M?a) Source of materials 

- “Frclen” 
“Dunlopillo”, Dunlop Ltd. G.B. 

7 “Rohaccll”, Rohm GmbH. W. Germany 
4 Morgan Thermic Ltd. G.B. 

- 
- 

> Commercial suppliers of 
seasoned woods 
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(a) (b) 

Fig. 2. Microstructures of the four types of foam: (a) polyethylene p/p, = 0.115; (b) polyurethane 
p/p, = 0.029; (c) ~tymethacrylimid p/p, = 0.103; (d) mu&te pjp, = 0.062. 

NOMINAL STRAJN CE NOMINAL STRAIN E 

Fig. 3. Compressive stress-strain curves for flexible poly- 
ethylene foams. 

Fig. 5. Compressive stress-strain curves for rigid (plastic) 
polymethacrylimid foams. 

NOMINAL STRAIN E 

Fig. 4. Compressive stress-strain curves for flexible poly- Fig. 6. Compressive stress-strain curve for a birttle mullite 
urethane foams. foam. 



1966 MAITI er ~1.: DEFORMATION AND ENERGY ABSORPTION 

Samote a (ketm? E’IMPat 

Uasmneric fwms 
Dualop DI 

D14 
Dt7 

F&Al F30 

:;0 
F175 
F2SO 

Plastic Jii 
Roba& 

:t 
71 

110 
170 
190 

woods 
B&a 
Balsa 
Willow 
Pine 
Willow 

14.4 0.054 
32.4 0.062 
51.7 0.057 
29.4 0.275 
69.2 t.10 

120.0 3.82 
138 4.58 
360 23.45 

34 
St.6 
70.4 

124 
160 
185.7 

E 
280 
320 

Radial Axiai Radial Axial Rod&d Axial 
103 103 31 420 0.80 8.0 
124 124 
403 355 
443 - 
520 385 

Mahogany 
Beech 

615 - 
711 733 -_- -_. 

79 258 
198 1270 
647 - 
321 2203 
610 - 

1160 7393 
Bee& 737 764 1569 7500 

Tension Compt-. 
43 20.8 
73.4 28.1 
93.2 56.9 

194 129.7 
280 198.7 
432 258.9 

8-50 0.02-0.1s 
6-22 0.035-0.16 
2-8 0.072-0.21 

25-44 0.093-0.16 

0.002 
0.0025 
0.005 
0.04 

:::4 
0.3 
2.56 

0.4 
0.8 

:*: 
s:2 
6.0 

I .20 1.0 
3.70 22.0 
6.50 - 
8.25 22.5 
- - 

- 50.0 
- 50.0 

3. MODELS FOR THE MECHANICAL PROPERTIES 

When a cellular material is compressed, the cell 
walls deform. The deformation modes (bending, 
buckling, plastic .collapse and fracture) are known 
from studies of model cells [2]. Two-dimensional 
models (shown in insets of subsequent figures) can be 
analysed aautrately [2]. With this knowledge, a kind 

‘of dimensional analysis of Zdimensional cellular 
solids [l, 3, 41 becomes possible. This analysis, sum- 
marised briefly below, involves, in each case, a single 
geometric constant which must be determined by 

# 
OO 0.2 

NOMIN:; STdii E 
0.8 

NOMINAL STRAIN E 

Fig. 7. Compressive stress-strain curves for woods in the Fig. 8. Compressive stress-strain curves for woods in the 
radial direction (~r~ndicuiar to the gram). axial direction (parallel to the grain). 

experiment. The data are analysed to give this 
constant. 

When a foam is loaded, the cell walls at first bend 
[l, 2, 5-71 as shown in the inset of Fig. 9. A force F, 
applied as shown, causes the non-vertical beams to 
deflect by an amount, 8, which can be calculated from 
elastic beam theory 

6 C, FI’ 
=E,I 

._. _-.-- 

I I I I -1 

(3) 
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Fig. 9. The relative Young’s modulus, E*/E,, plotted 
against relative density. p/p,. 

Here C, is a factor which depends on cell-wall 
geometry. A similar deflection occurs in a 
3-dimensional cellular solid, like those shown in Fig. 
1. Considering the open-cell foam, the force F is 
proportional to aI2 where u is the remote stress; and 
the strain E is proportional to S/l. The second 
moment of area, I, of a cell edge &&h section l2 is t4 
so that the modulus E* of the foam is 

The dimensions of the open cells are related to the 
relative density of the foam p/p, by 

PIP* cc r 2112 (5) 

giving 

E+ -= 
ES 

c, p * 
0 P* 

(6) 

where C, is a constant. The shear modulus scales in 
a similar way, because shear deformation in a foam 
also causes simple bending of the cell walls. [For 
closed cells, I a It’ and p/p, a t/f giving instead 

E*I4 = (Pl~,)‘.l 
Data are compared with equation (6) in Fig. 9. The 

full line is a plot of equation (6) with C, = I. It gives 
a good description of a wide range of materials and 
densities. (We find that plastic foams deviate system- 

we believe, some limited plasticity occurs even under 
small loads. Section 3.3, below, explains the power 
of ‘R.) 

Poissons ratios v have been measured for cellular 
solids [I, 31. In the linear-elastic regime, v x j, 
although in the plateau regime it is almost zero. 

3.2. Elaslic buckling 

Flexible foams show extensive non-linear elasticity. 
It is caused by the elastic buckling of the cell walls 
[8, 181, as shown in the inset of Fig. 10, and it is this 
that gives the plateau of the stress-strain curve for 
elastomeric foams. 

The critical load at which a column of length I, 
Young’s modulus IZ, and second moment of area I 
buckles, is given by Euler’s formula: 

If this load is reached for a layer of cells spanning the 
section, they buckle, initiating the elastic collapse of 
the foam. For the 3-dimensional open-cell foam of 
Fig. 1 the stress uf at which this occurs is propor- 
tional to F,/l’. Using the facts that I a I’ and 
p/p* a (r/f)2 we obtain the elastic collapse, or pla- 
teau, stress 

4 -c, p 
2 

E,- PI’ 0 

Fig. 10. The relative elastic collapse stress, nf/E, plotted 
atically towards the line E*/i?, = (p/~,)‘~, because, against relative density, p/p, 
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It is valid for relative densities below 0.3. At higher 
densities, the cell walls are too short and stocky to 
buckle; instead they yield or crush. 

Data for 6:: for elastomeric foams are compared 
with equation (8) in Fig, 10. They are well fitted by 
the equation with C, = 0.05. 

3.3. Plmic cdapse 

If the cell-wall material yields plastically, as do 
metals and many polymers, then the foam as a whole 
shows a plateau caused by plastic collapse. It occurs 
when the moment on the inclined cell walls exceeds 
the fully plastic moment, creating plastic hinges 
[2,3,19,20] as shown in the inset of Fig. 1 I. For a 
beam of square section of side t, the fully plastic 
moment is 

MP =fu/. (9) 

The moment is proportional to Fi, and (as before) the 
force F is proportional to tr12. Combining these 
results with equation (5) we find the plastic collapse, 
or plateau, stress us to be 

4 P 0 
312 

---c, - . 

=Y PI 
w 

Data for the plateau-stress of plastic foams are 
plotted in Fig. 11. They are well fitted by equation 
(IO) with C, s 0.3 for relative densities less than 0.3 
(1); at higher densities the cell edges are too short and 
stocky to bend plastically; instead, they shear. 

YIELD STRENGTH 1 

RELATIVE DENSITY p/p: 

Fig. II. The relative plastic collapse stress, uaur, plotted 
against relative density, p/p,. 

3.4. Brittle cr~hjng 

Brittle foams (ceramics, and certain rigid polymers) 
collapse by yet other mechanisms: brittle crushing in 
compression [23], brittle fracture in tension [24,25]. 
Let tbe modulus of rupture (the maximum surface or 
skin stress at the instant of fracture) for the cell-wall 
material be c,. Then a cell wall will fail as shown in 
the inset to Fig. 12 when the moment acting on it 
exceeds 

A!f,=~cr/t? 

The moment due to F is proportional to Fl, and the 
stress to F/l’. Combi~ng these with equation (5) 
gives the crushing strength UT of the foam 

01) 

The limited experimental data, shown in Fig. 12, 
are consistent with C, = 0.65 but are insufficient to 
give much more confidence in equation (11). But 
observations, reviewed elsewhere [4], suggest that the 
model has the correct physical basis, and we shall 
employ it in subsequent sections. 

3.5. Demification and the shape of the stress-strain 
curve 

The plateau ends when the folding cell walls begin 
to touch. During elastic buckling or plastic collapse, 
the foam compresses axially with almost no lateral 
spreading (v RI 0). Then simple geometry gives the 

RELATIVE DENSlTY P/P, 

Fig. 12, The relative crushing strength, ~;/a,, plotted 
against relative density, p/p,, for brittle foams. 
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relative density p(.s)/p, after a nominal compressive 
strain s as 

(12) 

where p/p,, is the initial relative density. Densification 
is complete, and the stress-strain curve becomes 
almost vertical, when p(&)/p,= 1, when the strain is 

s/= 1 -P/P,. (13) 

We find experimentally that the end of the plateau 
corresponds to p(~)/p,~ x 0.33 (the solid occupies f of 
the total volume) when the strain is 

a.7 = 1 - 3 (P/P,). (14) 

Consider now the shape of the stress-strain curve 
for flexible foams. In any sample of the foam, there 
is a distribution of cell edge-lengths and angles. The 
plateau starts when a layer of cells (those with 
longest, or most favourably oriented, edges) buckle 
[equation (711. A small increase in stress is needed to 
cause more cell edges (those which are slightly 
shorter) to buckle. We postulate that the length of the 
edges which are about to buckle after a strain E, I(s), 
is given by 

l(E)=l HYl (15) 

O 1 - (P/P,)“’ 

phe value I(s) ranges from lo at the start of defor- 
mation to zero when full density is reached.] Using 
equation (12) we obtain 

&) _I [I -(f&J'7 
-0 

1 - (P/PY . 
(16) 

The argument of Section 3.2 can now be repeated. 
The force F on the cell wall is related to lo throughout 
the test by F = a ii. Collapse of cells with edge length 
I(E) [given by equation (16)] occurs when this force 
exceeds the buckling load given by equation (7). 
Combining these equations gives 

which reduces to our original equation (8) at small 
strains, but becomes infinite (approximating E,) at 
the strain given by equation (13). 

A similar analysis can be made for plastic foams. 
We postulate that the length of the beams which are 
about to bend plastically decreases as strain proceeds 
(because the long ones bend first). If the length at a 
strain E is given (as before) by equation (16), then by 

the argument of Section 3.3, the strength of a plastic 
foam follows 

This reduces to equation (10) at small strains, but 
becomes infinite (approximating E,) as the foam is 
compressed to the solid density [equation (13)]. 

These two results give an approximate description 
of the stress-strain curves for flexible and for rigid- 
plastic foams, in the fields of plastic collapse and 
densification. They are combined with the equations 
for linear-elasticity, in the next sections, to construct 
deformation-mode maps and energy-absorption 
diagrams. 

4. CONSTRUCTION OF DEFORMATION-MODE 
MAPS 

We have seen that when an elastomeric foam is 
compressed, it first deforms in a linear-elastic way; 
then its cells buckle to give non-linear elasticity; and, 
finally, the cells collapse completely and the stress 
rises rapidly as their faces and edges are forced 
together. A plastic foam behaves in a somewhat 
similar way, except that linear elasticity is now fol- 
lowed by plastic collapse, and the ultimate forcing 
together of the cell walls. With brittle foams, 
progressive crushing can again lead to a plateau 
which ends when the material is completely crushed. 
We have seen, too, that each of these processes can 
be modelled adequately by using classical beam the- 
ory to analyse the deformation of cell walls. The 
analysis relates foam properties to the relative density 
(p/p,) and to the properties of the material of which 
the foam is made. The relations, summa&d in Table 
4, suggest a normalisation which brings the properties 
of foams with the same relative densities into coin- 
cidence. Then the properties of an entire family of 
foams can be shown as a deformation mode map (4). 
of which Figs 13-16 are examples. The map has axes 
of norrnalised compressive stress a/E,, and the com- 
pressive strain E. It shows the jeluk in which each 
mode of deformation (linear elasticity, non-linear 
elasticity, plastic collapse and so forth) is dominant. 
Superimposed on the fields are stress-strain contours 
for constant (initial) relative density. 

4.1. Elastomeric foams 

Figures 13 and 14 show mechanism-mode maps for 
elastomeric foams. Figure 13 shows the experimental 
stress-strain curves for polymeric foams; Fig. 14 is 
based on the theory alone. Mechanism field bound- 
aries (heavy lines) are shown on both figures. They 
were constructed as follows. 

The linear-elastic regime ends when elastic buck- 
ling begins. Using equations (6) and (8), and the fact 
that 0 = EC in the linear-elastic region, we obtain the 
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Table 4. Equation for stiffness and strength of cellular solids 

Property 
Equation 

Equation No. --_.-- ..-_.. ._~ ~. _ _ _..~_ .____~_. ~_. _ .._. 

Young’s modulus 
E’ p’ 
-= - 

0 E, P, 
(6) 

Plateau stress, 
l 

0 

* 
flexible foams 

0$ = 0.05 !I 
P, 

(8) 
I 

Plateau stress, 
plastic foams 

Approximate plateau 
stress, brittle foams 

(10) 

(11) 

2 

Stress-strain response, 
flexible foam ~=o.os(~-{ * _;;$,..} (17) 

I 

Stress-strain response, 
plastic foam 

:=0.3 ; lP 
, () 1 ,- P 6) 

II3 ’ 

, 

I- ; & [( 111 )I; 
(18) 

i 

COMPRESSIVE STRAIN 
Fig. 13. A deformation-mode map for flexible foams. It 
shows the data of Figs 3 and 4, nonnalised. The construc- 

tion of the field boundaries is described in the text. 

COMPRESSIVE STRAIN E 
Fig. 15. A deformation-mode map for plastic foams. It 
shows the data of Fig. 5, normal&d. The construction of 

the field boundaries is described in the text. 

ELASTOMERIC FOP 

COMPRESSIVE STRAIN E COMPRESSIVE STRAIN, E 
Fig. 14. A deformation-mode map for flexible foams, con- 
structed entirely from the equations developed in the text. 

Fig. 16. A deformation-mode map for plastic foams, con- 
structed entirely from the equations developed in the text. 
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strain corresponding to the boundary of the linear- 
elastic field 

& = c, = 0.05 

At relative densities above about 0.3 the cell walls 
become so stocky that they can no longer buckle 
elastically. The field boundary thus bends until it is 
tangent to the linear-elastic loading line for 
p/p, = 0.3. 

Once elastic buckling starts, the stress is related to 
the strain by equation (17). We define the transition 
from buckling to densification as the line at which the 
relative density has reached f. Then, from equations 
(14) and (17) the equation of the transition is 

+9xlo-r(I-s)~ l- 
I 

{ (yy (19) 

It is plotted as a heavy line, sloping down from left 
to right on the figures. 

Figure 14 shows a theoretical map. The contours 
are stress-strain curves for foams of relative density 
between 0.01 and 0.4. They show a linear elastic 
regime [equation (a)] and a plateau corresponding 
to elastic buckling; they start to bend upwards 
when densification starts [equation (1711; and they 
approach a limiting slope of E, when densification is 
complete [equation (13)]. Within the field of elastic 
buckling the material exists in two states at almost the 
same stress (the linear-elastic state and the densified 
state); it is like the p-V response of an ideal gas (or 
the temperature-entropy diagram for steam) in which 
gas and liquid stat4 can co-exist. The material 
deforms by the formation of densified bands which 
thicken, at constant stress, as the strain is increased, 
until the entire material has reached the dense state. 

The figure describes the overall response of all 
isotropic, flexible foams in compression. In tension, 
flexible foams are roughly linear-elastic to rupture. 

4.2. Rigid plastic foams 

Plastic foams, like the elastic ones, show three 
regions: linear elasticity, plastic collapse and 
densification-though now the strain beyond the 
linear-elastic regime is not recoverable. Figures I5 
and 16 are a pair of maps, one showing our 
experimental stress-strain curves for plastic foams, 
the other, based on the theory alone. Mechanism 
field-boundaries are superimposed on the stress- 
strain curves. 

The boundary of the linear-elastic field (heavy line) 
is obtained from the equation for linear elasticity 
[equation (6)] and that for plastic collapse [equation 
(IO)]; its equation is 

;= 0.3? ‘$. 
I ( > * 

cw 
In constructing the map we have taken q,,/fi, to be 
0. IO (a fairly typical value). Next to the linear-elastic 
field is the field of plastic collapse. As before, two 
states of strain co-exist at almost the same stress. so 

that complete collapse of part of the structure can 
occur while the rest is still elastic; the bands of dense 
material broaden with increasing strain. We define 
the transition from collapse to densification as the 
line at which the relative density has reached f. Then, 
from equation (14) and equation (18) the equation of 
the transition line is 

;=0.19~(1 -&)3’2 I - 
I I 

{ (!q”}. (21) 

It is plotted as a heavy line sloping down from left to 
right on Figs 15 and 16. 

Figure 16 shows a theoretical map for plastic 
foams with rrJ.E, = 0.10. It shows fields of elastic 
deformation, plastic collapse and densification. 
Superimposed on the fields are stress-strain curves 
for foams with densities form 0.01 to 0.4. 

The figure shows the overall response of isotropic, 
plastic foams in compression. It is less general than 
the map for elastomeric foams because it must be 
constructed for a particular value of u,/E,. But the 
equations show that the boundaries are not very 
sensitive to its value, and, for a given material, the 
diagram shows the behaviour for all densities. 

The behaviour of plastic foams in tension resem- 
bles that in compression, truncated by fracture. 

4.3. Brittle foams 

Rigid foams show linear-elastic behaviour to frac- 
ture. In compression, the foam crushes at constant 
stress [equation (1 I)], and since the crushing equation 
has the same form as that for plastic collapse, the 
behaviour will resemble that of Figs I5 and 16. If the 
foam is contained, it will densify at the strain given 
approximately by equation (18), with by/E, replaced 

by e,lE.<. 
In tension, linear elastic behaviour is truncated by 

fast, brittle fracture. The fracture mechanics of foams 
[28] need not concern us here. 

4.4. wooa!r 

These ideas can be applied, in an approximate way, 
to the compressive deformation of wood. Woods are 
cellular solids, composed of mixed polymers (cellu- 
lose, lignin, hemicellulose), and with a relative density 
ranging from less than 0.05 (balsas) to almost I 
(lignum vitae). Compressed across the grain, wood 
behaves like a rigid-plastic foam. Stress-strain curves 
for the woods we tested are shown in Fig. 17, plotted 
on axes of a/E., and E (data in Tables 2 and 3). 

The field boundaries of Fig. 17 were constructed as 
follows. In radial compression, Young’s modulus for 
woods is found to follow the same law as elastic 
foams (29) 

0 
2 

E* = 10 c GN/m2. 
P, 
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Fig. 17. A deformation-mode map for woods, tested in the 
radial direction (across the grain). 

Compressive collapse in the radial direction equation 
(29) starts at the stress 

(23) 

Thus the equation of the boundary separating elastic 
from collapse behaviour is 

E = 0.014. (24) 

Using the method given in Section 3.5, the 
stress-strain beyond yield is described approximately 

by 

J 

and the boundary between collapse and densification, 
where the relative density reaches i, is given by 

; = 0.005 (1 - e)2 [ (F)J. 1 - (25) 
I 

The field boundaries divide the behaviour into 3 
regimes and give a diagram which summarises the 
properties of all woods in radial compression. 

Compression along the grain is more complicated. 
In this direction, the wood has properties inter- k! 15# 
mediate between those of a rigid-plastic and a brittle 
cellular solid (compare the stress-strain curves of Fig. 
8 with those of Figs 5 and 6). In axial compression, 
Young’s modulus varies linearly with density [29,30] 

E z 35 (26) 

and the collapse stress u*, too, varies linearly with 
density [29,30] 

u* = 150 f MN/m2. 
0 (27) 
1’ ‘I 

Fig. 18. A deformation-mode map for woods tested in the . . . . . _ . . . I 

Then the equation of the line separating elastic and 
collapse behaviour is 

E = 0.004. 

When woods are compressed axially, they collapse by 
a process which involves the kinking (301 or fracture 
[29,30] of the cell walls. This occurs at essentially 
co~~~hrnf stress until a critical state is reached, when 
the stress-strain curve bends sharply upwards. 
Experimentally, we find that the bend upwards 
occurs at a strain E, corresponding to a density of 
roughly 0.5 

&,=l-2 p. 
0 PS 
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Combining this with equation (27) gives the field 
boundary 

c* 
F=2 x lo-‘(1 -&). (29) 

I 

It is plotted as a heavy line on Fig. 18. The figure 
summarises the compressive behaviour of woods in 
the axial direction. Both diagrams allow, by inter- 
polation, or the use of the equations, the approximate 
prediction of the stress-strain curve for woods of 
other densities. 

5. CONSTRUCTION OF ENERGY-ABSORPTION 
DlAGRAMS 

The commonest use of foams is in packaging. The 
aim is to absorb energy (usually the kinetic energy) 
of the packaged object when it is dropped, or is 
accelerated or decelerated in some other way, while 
at the same time keeping the force on the object 
below the limit which will cause damage. In selecting 
a material for the package, we need to know the 
energy that can be absorbed without the stress 

exceeding a critical value. We show below that there 
is an optimum foam density for a given package. If 

0 
0 025 0.50 0.7s 1.0 
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axial dlrectlon (along tne gram). 
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Fig. 19. An energy-absorption diagram for elastomeric 
foams, constructed from the equations given in the text. The 
broken line divides the diagram into an accessible and an 

inaoxssible region. 

the density is too low, the foam “bottoms out” (with 
a sharp increase in stress) before enough energy has 
been absorbed. If it is too dense, the stress exceeds the 
critical value before enough energy has been 
absorbed. 

Figure 19 shows, inset, part of a stress-strain curve 
for a foam. It is linear-elastic to ~0, and thereafter 
follows the stress-strain Q(E) curve described 
approximately by equation (17) or (18). The area, up 
to the strain E*, where the stress is u, (shaded on 
Fig. 19) is 

rg 

I s 

ti 
w= u ds + U(E) de 

0 m 

or 

W lE*r 
-=--so+ 

s 

*’ U(E) 

E, 2 4 
-de 

ro E, 
(30) 

This equation was integrated using equation (I 7) for 
u(s) for elastic foams and equation (18) for plastic 
foams, to give Figs I9 and 2 1. Similar diagrams can, 
of course, be constructed directly from the experi- 
mental stress-strain curves (such as those shown in 
Figs 34) by measuring the area W/E, up to the strain 
E+ corresponding to the stress u/E,. Such diagrams 
are shown, for comparison, in Figs 20 and 22. 

The energy diagram, calculated for elastic foams 
(Fig. 19) shows the normalised energy absorbed per 
unit volume for foam, W/E,, plotted against the peak 
stress u/E,, for a range of densities p/p,. Norma&d 
in this way, the diagram describes all elastic foams, 
If the critical damage stress is selected, then the 
diagram gives the foam density which will absorb the 
greatest amount of energy without this stress being 
exceeded. The lower the peak stress, the lower is the 
optimum foam density. As an example, using Fig. 19 
or 20. the optimum foam density for a critical damage 

stress u/E.= lo-’ is p/p, = 0.1. Choosing the right 
density is important: it can easily give a factor of 10 
greater absorption of energy than a wrongly-chosen 
foam. 

Figures 21 and 22 show energy diagrams for a 
plastic foam with u,/E, = 0. I. Such diagrams are less 
general than those for elastic foams, because uJE, 
must be specified; but a single diagram still describes 
all foams made of a given material (polystyrene, for 
example). Here, too, there is an optimum foam 
density for a given energy absorption and peak stress. 
The diagram allows it to be chosen. 

The figures show that, for a given material (and 
thus E,), there is a maximum energy which can be 
absorbed for a given peak stress. The envelope shown 
as a broken line on Figs 19 and 21 divides the 
diagram into an accessible region (below the line) and 
an inaccessible one (above). For elastomeric foams, 
the equation of the line is approximately 

/ _\7m 
W/E,=O.ll ; . 

0 I 

It anulies to all elastic foams. For the plastic foam 
with _ u,,/I$ = 0.1, the equation of 
approximately 

u 2p 
W/E,=O.O5 E . 0 * 

The equations apply from p/p, = 0.01 

the line is 

(32) 

to p/p, = 0.3. 

6. CONCLUSIONS AND APPLICATIONS 

6.1. Conclusions 

When a cellular solid with a relative density below 
0.30 is compressed, it shows a stress-strain curve with 
three parts: a linear-elastic part, a long plateau, and 
a regime of final densification. The properties of an 
entire class of such solids can be summa&d as a 

10-Z 
[ELASTIC FOAMS 

Fig. 20. An energy-absorption diagram for elastomeric 
foams, constructed by measuring the areas under the 
stress-strain curves of Figs 3 and 4. It is directly comparable 

with Fig. 19. 
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Fig. 21. An energy-absorption diagram for plastic foams, 
constructed from the equations given in the text, with 
uJE, = 0.1. The broken line divides the diagram into an 

accessible and an inaccessible region. 

deformation-mode map, which shows how each of 
the three parts changes as the relative density 
changes. The method can be applied to man-made 
foams (Figs 13-16) and to natural materials, such as 
woods (Figs 17 and 18), to give diagrams which 
summarise the stress-strain response of each class of 
material. 

The mechanical properties of cellular solids can be 
modelled with precision. The models lead to consti- 
tutive laws (stress-strain relations) which have been 
thoroughly tested in simple compression. They are 
summa&d in Table 4. The constitutive laws can be 
used to construct deformation-mode maps, and can 
be integrated to construct energy-absorption dia- 
grams. These diagrams (Figs 19-22) show how the 
energy absorbed, per unit volume of foam, depends 
on the density of the foam and on the stress. The 

‘::;-l 

s 

Fig. 22. An energy-absorption diagram for poly- 
methacrylimid foams, constructed by measuring the areas 
under the stress-strain curves of Fig. 5. It is directly 

comparable with Fig. 21. 

diagrams show that there is an optimum foam density 

for a given packaging or energy-absorbing 
application. 

4.2. Design with cellular solia!v 

The equations derived in the text, and summarised 
in Table 4, provide the basic information for design 
with foams in load-bearing applications. The tests 
described above ail involved simple compression. 
Under multiaxial loads, the behaviour is more com- 
plicated. At small strains (s < 5x), while the material 
is linear-elastic, it behaves like any other elastic solid 
[I, 31 with Young’s modulus E* given by equation (6) 
and Poisson’s ratio v = f. But once the plateau-stress 
has been reached, the behaviour changes: the exten- 
sive deformation at nearly constant stress involves a 
large volume change, but almost no lateral strain 
[l, 3,26,271 so that v x 0. The the material fails 
under a multiaxial state of stress when the maximum 
principal stress (not the octahedral shear stress) 
reaches the critical value of u* [equation (8) for 
flexible foams, equation (10) for plastic foams]. Be- 
cause of this, the indentation hardness of plastic 
foams is equal to 0,: (not 36; as in dense solids) and 
the force needed to compress a foam is the same 
whether it is free at its edges or constrained there [15]. 
Once densification starts, of course, the properties 
revert towards those of conventional solids. 

The deformation mode map for a class of foams 
provides a compact summary of the mechanical 
response of the class. In particular, the maps give a 
rational way of selecting the material and density 
which will give a desired stress-strain response. 
Similarly, the energy-absorption diagram for a class 
of foam summarises the energy absorbing capacity of 
all members of the class. The diagrams identify the 
optimum foam material and density for a given 
packaging, padding or cushioning application. 
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